Сәрсенбі, 22 Қаңтар 2025
  • :
  • :
Бізбен байланыс
kum2017@yandex.ru
WhatsApp: +7 705 241 87 47


Бұл таңғажайып сандар

31 мам 2018, Бейсенбі
Категориясы: Математика
Бұл таңғажайып сандар тақырыбына ғылыми жұмысы
МАЗМҰНЫ
І. Кіріспе................................................................................................ 4
ІІ. Негізгі бөлім
2. 1. Жай сандар туралы....................................................................... 5
2. 2. Кемел сандар................................................................................. 7
2. 3. Достас сандар................................................................................ 8
2. 4. Егіз сандар..................................................................................... 9
2. 5. Палиндромдар мен репюниттер................................................. 10
ІІІ. Қорытынды.................................................................................... 11
ІҮ. Пайдаланған әдебиеттер.............................................................. 12
Ү. Қосымшалар................................................................................... 13

І. Кіріспе
Әлемді сандарсыз елестетуге бола ма? Сандар түсінігінің пайда болуының өзі – адамзат ақыл - ойының жарқын жемісі. Шынымен де, сандар көмегімен өлшейді, салыстырады, есептейді, ал тағы сурет салады, сызба жасайды, ойнайды, тұжырымдайды, қорытынды жасайды.
Сан — математиканың негізгі ұғымдарының бірі. Қарапайым түрде алғашқы қоғамдарда - ақ пайда болған, кейін бірте - бірте қолданыс аясы кеңейіп әрі жалпыланды. Кейбір заттарды санауға байланысты бүтін оң (натурал) сандар ұғымы, кейіннен сандардың натурал қатарының (1, 2, 3, 4, …) шексіздігі туралы идея пайда болды. Сан ұғымының алғашқы кеңеюі — натурал сандарға бөлшек сандардың қосылуы болды. Ол ұзындықты өлшеу, ауданды табу, сондай - ақ, атаулы шамалардың үлесін бөліп шығару қажеттілігіне байланысты қолданысқа енгізілді. Теріс сандар арифметикалық есептерді шешудің жалпы тәсілдерін беретін алгебраның ғылым ретінде дамуына байланысты шықты. Бүтін, бөлшек (оң және теріс) және нөл сандары рационал сан деп аталды. Айнымалы шамалардың шексіз өзгеруін зерттеу үшін сан ұғымы кеңейтіліп, нақты сандар жиынтығы пайда болды. Шамалардың қатынасын өрнектеу қажеттігі иррационал сандар ұғымын енгізуге себепші болды. ХҮІ ғасырда квадрат және куб теңдеулерді шешуге байланысты жорамал сандар ұғымы енгізілді.
Пайда болу уақыты бойынша ең ежелгісі - натурал сандар. Натурал сандар нәрселерді санауда қолданады. Бастауыш сыныпта біз тақ және жұп сандармен таныстық, ал 5 сыныптың математика сабағында жай және құрама сандар пайда болады. Сонымен қатар натурал сандардың арасында кемел сандар, достас сандар, палиндромдар тағы басқа сандар түрі болады екен, бірақ біздер ол туралы мектепте оқымайды екенбіз.
Ең бірінші жай сандардан бастайық. Егер жай сандарды барлық натурал сандар тұрғызылатын «кірпіштер» десек, онда оларды «қалау» арқылы таңғажайып «сандар қамалын» алуға болады.

ІІ. Негізгі бөлім
Зерттеу нысаны – натурал сандар және олардың қасиеті.
Жұмыстың мақсаты: таңғажайып сандармен танысу және жай сандардың қасиеттері арқылы олардың ролін арттыру.
Бұл жай сандар деген соншалықты «жай ма»?
Әр түрлі екі бөлгіші бар сандар жай сандар деп аталады. Мысалы, 5=1∙5, 29=1∙29, 37=1∙37 және т. б. Ең кіші жай сан – 2. Бұл жалғыз ғана жұп жай сан.
Кішігірім зерттеу жүргізейік.
Натурал сандарды екі жай санның көбейтіндісі күйінде қарастырайық, Мысалы: 12=2∙2∙3; 18=2∙3∙3; 140=2∙2∙5∙7 және т. б. Енді математикадағы жай сандардың ролін жеңіл түсіндіруге болады: олар көбейтудің көмегімен қалған басқа барлық сандар тұрғызылатын сол «кірпіштер» екен. Барлық жай сандарды санауға бола ма? Ертеде - ақ ежелгі грек математигі Евклид ең үлкен жай санның табылмайтынын тұжырымдаған.
Барлық қалған сандарды оқып - үйренуде жай сан маңызды роль атқаратын болса, олардың тізімін жасау керек қой! Әрине, ең үлкен жай санның жоқ екенін білгеннен кейін, барлық жай санның тізімін жасауға үміттенуге болмайды. Бірақ 1000 - ға дейінгі жай сандардың тізімін жасауға болатын шығар. Бұл жөнінде, яғни жалпы жай сандардың тізімін қалай жасау керектігі туралы біздің жыл санауымызға дейінгі ІІІ ғасырда өмір сүрген александриялық ғалым Эратосфен ойға қалды. Эратосфен өте жан - жақты адам болды: ол сандар теориясымен де, жұлдыздарды зерттеумен де айналысты. Бірақ оның есімі ғылымда жай сандарды іздеу әдісімен мәңгіге қалды. Ол математикамен қатар астрономия, география, тарихты да жақсы білген. Сол кездегі белгілі әлем картасы мен аспан денелерінің картасын жасаған, сондай - ақ кібісе (високосный) жылды еңгізудің қажеттілігін негіздеген. Оның негізгі жетістігі – Жердің көлемін адамдар оның шар тәріздес екенін білгенге дейін есептеп шығаруы. Эратосфен жай сандардың кестесін жасауға арналған өзінің тәсілін ұсынды.
Эратосфен балауыздан жасалған тақтайшада натурал сандарды алып тастап отырған. Сонда алғашқы кесте елек тәрізденіп, онда тек қана жай сандар қалған. Сондықтан оны Эратосфен елегі деп атаған.
Сонымен, бірінші жай сан – 2. Оны қалдыра отырып, екіге еселік болатын сандарды сызып тастаймыз. Келесі жай сан – 3. Оны қалдырып үшке еселік сандарды сызамыз және т. с. с. Нәтижесінде жай сандар тізбесін аламыз. Жай сандарды өте ұзақ еңбекті қажет ететін есептеулер арқылы алуға болады. Жақында 25692 цифрдан тұратын жай сан табылды! Оның жай сан екенін дәлелдеу үшін тез әрекет ететін компьютердің өзіне бірнеше апта қажет болды. Көріп отырғанымыздай, жай сандарды оңай табу мүмкін болмағандықтан, оларды құпия шифрлар үшін қолданатын болды, ал біз жай сандарды басқа таңғажайып сандарды табу үшін қолданатын боламыз.
Натурал сандарды 2 - ден бастап 6 бағанға орналастырамыз. Жай сандарды табу үшін сүзіп алатын Эратосфен «торының» бір моделін аламыз. Дөңгелекпен қоршалғандардың бәрі - жай сандар. Құрама сандардың үсті сызылған. 5 - тен басталатын барлық жай сандар тек қана екі бағанда: 4 пен 6 - шы бағанда. 4 - ші және 6 - шы бағандардың қайсыбір жолында екі жай сан кездессе, онда бұл жай сандар «егіз» сандар жұбы деп аталады: (5; 7), (11; 13), (17; 19), (29; 31), (41; 43) және т. с. с.

Совет Одағының Батыры Мәди Бегенов атындағы
жалпы білім беретін орта мектептің
5 сынып оқушысы Жұмағалиев Ғалымжан

Бұл таңғажайып сандар. жүктеу

Жаңалықтар
Жай сандар және құрама сандар
Жай сандар және құрама сандар
Жай сандар мен құрама сандарды және құрама сандарды көбейткішке жіктеуді үйрету.
Жай сандар және құрама сандар
Жай сандар және құрама сандар
Жай сандар және құрама сандар Жай сандар мен құрама сандарды анықтай білу және оны есеп шығаруда қолдануға үйрету
Рационал сандарды координаталық түзудің көмегімен қосу
Рационал сандарды координаталық түзудің көмегімен қосу
Оқушыларға рационал сандарды координаталық түзудің көмегімен қосу дағдысын қалыптастыру, есептер шығаруға үйрету.
Санның бөлінгіштік қасиеттері
Санның бөлінгіштік қасиеттері
Маңғыстау облысы, Жаңаөзен қаласы, Теңге ауылы, №11 орта мектептің математика пәнінің мұғалімі Карлова Зина
Жай сандар, құрама сандар
Жай сандар, құрама сандар
Жай сандар, құрама сандар. Оқушыларға жай сандар және құрама сандар тақырыбын тереңірек меңгерту үшін есептер шығарып үйрету. Оқушылардың есте сақтау қабілеттерін дамыту.
Жай сандар, құрама сандар
Жай сандар, құрама сандар
Қызылорда облысы, Қазалы ауданы, Бекарыстан би ауылы, №24 орта мектебінің математика пәні мұғалімі: Баймағанбетова Жанар Өтегенқызы
Пікірлер (0)
Ақпарат
Қонақтар,тобындағы қолданушылар пікірін білдіре алмайды.
×