Бізбен байланыс
kum2017@yandex.ru
WhatsApp: +7 705 241 87 47


Сызықтық теңдеулер жүйесін Крамер және Гаусс әдісімен шешу

10 ақпан 2018, Сенбі
Категориясы: Математика
Сабақтың тақырыбы: Сызықтық теңдеулер жүйесін Крамер және Гаусс әдісімен шешу
Сабақтың мақсаты: Білімділік: Оқушыларға сызықтық теңдеулер жүйесін Крамер және Гаусс әдістері бойынша шешуге болатындығын түсіндіру, Крамер, Гаусс әдістерін нақты түсіндіру теоремасын беру.
Тәрбиелік: Крамер, Гаусс өмірбаяндарынан үзінді келтіріп ғылыми көзқараста тәрбиелеу.
Дамытушылық: сызықтық теңдеулер жүйесінің шешу әдістерінің түрлерімен байланыстырып, өздеріне жеңіл және шапшаң есептеу әдістерін дамыту.
Сабақтың көрнекілігі: Крамер әдісі сызылған плакат, үлестірмелі материалдар,
Сабақтың типі: жаңа білімді меңгерту сабағы
Сабақтың түрі: практикалық (өз бетімен жұмыстану)

Сабақтың барысы: а) Ұйымдастыру.
б) Үй тапсырмасын тексеру.
в) Жаңа сабақты түсіндіру және бекіту.
г) Қорытындылау.
д) Үйге тапсырма.

а - а: (Крамер теоремасы) Егер берілген сызықтық теңдеулер жүйесінің анықтауышы 0 - ге тең емес болса, онда берілген жүйенің тек қана бір шешімі болады. Оларды мына формулалар арқылы табамыз.

Сызықтық теңдеулер жүйесін Крамер және Гаусс әдісімен шешу. жүктеу
4 696
0
  • 0
0 дауыс


Жаңалықтар
Екі айнымалысы бар сызықтық теңдеулер жүйесін қосу тәсілімен шешуге есептер шығару.
Екі айнымалысы бар сызықтық теңдеулер жүйесін қосу тәсілімен шешуге есептер шығару.
Екі айнымалысы бар сызықтық теңдеулер жүйесін қосу тәсілімен шешуге есептер шығару.
Екі айнымалысы бар сызықтық теңдеулер жүйесін қосу тәсілімен шешуге есептер шығару
Екі айнымалысы бар сызықтық теңдеулер жүйесін қосу тәсілімен шешуге есептер шығару
Оқушыларға екі айнымалысы бар сызықтық теңдеулер жүйесін шешудің қосу тәсілінің алгоритмін есептер шығаруда қолдана білуді меңгерту. Оқушылардың іскерліктерін, өз бетімен еңбектену сезімдерін, білімдерін дамыту.
Матрицаның рангі. Кронекер - Капелли теоремасы. Cызықты теңдеулер жүйесінің шешу тәсілдері
Матрицаның рангі. Кронекер - Капелли теоремасы. Cызықты теңдеулер жүйесінің шешу тәсілдері
Матрицаның рангы деп нөлге тең емес минордың ең жоғарғы ретін айтады.
Екі айнымалысы бар сызықтық емес теңдеулер жүйесі
Екі айнымалысы бар сызықтық емес теңдеулер жүйесі
Арал ауданы, №82 орта мектептің математика пәні мұғалімі Сейтжанова Г.
Қолданбалы курс бағдарламасы «Матрица»
Қолданбалы курс бағдарламасы «Матрица»
Ыдырысов Әбдіқасым Молдақадырұлы жоғары санатты математика пәні мұғалімі Алматы облысы, Райымбек ауданы, Жалаңаш селосы Жамал Ермегияев атындағы орта мектебі
Сызықтық теңдеулер жүйелері. Крамер әдісі, Гаусс әдісі, кері матрица әдісімен шешу
Сызықтық теңдеулер жүйелері. Крамер әдісі, Гаусс әдісі, кері матрица әдісімен шешу
Сабқатың мақсаты: Білімділік: Сызықтық теңдеулер жүйесін шешудің әдістерін үйрету, Коамер, Гаусс әдістерін және Кері матрица әдісінде жүйенің шешімдерін табуды үйрету. Сызықтық бағдарламалаудың модельдерін құруды үйрету. Тәрбиелік: Оқушыларды
Пікірлер (0)
Ақпарат
Қонақтар,тобындағы қолданушылар пікірін білдіре алмайды.
×