Решение уравнений в целых числах
Тема урока №2: "Решение уравнений в целых числах"
Тип урока: комбинированный урок
Основные понятия. Целочисленные решения уравнения
Самостоятельная деятельность учащихся. Решение задач по теме "Решение уравнений в целых числах".
Использование новых информационных технологий. В качестве дополнительного иллюстративного материала показ на интерактивной доске презентации к данному уроку.
План урока
Этапы урока
I. Этап актуализации знаний. Мотивация учебной проблемы
II. Основное содержание урока. Отработка с учащимися решений уравнений в целых числах
III. Формирование умений и навыков. Отработка изученного материала
IV. Первичная проверка усвоения знаний. Рефлексия
V. Домашнее задание
Основное содержание урока
Решение уравнений в целых числах
Рассмотрим несколько типичных уравнений, в которых требуется либо найти целочисленные решения, либо доказать отсутствие таковых.
Пример: Найти все целочисленные решения уравнения 3x2+4xy - 7y2=13
Решение. Разложим левую часть множители: 3x2+4xy - 7y2=(x - y)(3x+7y)
Имеем. Поскольку 13 можно представить в виде произведение двух целых чисел с учетом порядке четырьмя способами, то получаем четыре системы.
x - y=1 x - y=13 x - y=- 1 x - y=- 13
3x+7y=13 3x+7y=1 3x+7y=- 13 3x+7y=- 1
Целочисленные решения имеют лишь 1 - я и 3 - я системы. Ответ:(2; 1) (- 2;- 1).
Пример: Решить в целых числах уравнение 2х2 - 2ху+9х+у=2
Решение: Выразим у через х: у=(2x2+9x - 2)/(2x - 1)=(2x2 - x+10x - 5+3)/(2x - 1)=x+5+3/(2x - 1)
Поскольку у и х – целые числа, то 3/(2x - 1) должно быть целым числом. Имеем четыре возможности: 1) 2х - 1=1; 2) 2x - 1=3; 3) 2x - 1=- 1; 4) 2x - 1=- 3. Затем находим х и у. Ответ:(1; 9); (2; 8); (0; 2); (- 1; 3)
Пример: Найти целочисленные решения уравнения 113х+179у=17, удовлетворяющие неравенствам х>0, y>- 100.
Решение. Воспользуемся методом, сходным с алгоритмом Евклида. Имеем 179=113+66. Перепишем наше уравнение в виде: 113(x+y)+66y=17. Обозначим х+у=u, 113u+66y=17. Как видим, у нового уравнения один из коэффициентов уменьшился. Можно вновь 113 разделить на 66 с остатком, а лучше так: 113=2*66 - 19. Получаем 66(2u+y)- 19u=17. Обозначим 2u+y=v, 66v - 19u=17, 66=19*3+9. Получаем уравнение 19(3v - u)+9v - 17, 3v - u=w; 19w+9v=17, 9(2w+v)+w=17, 2w+v=t. Наконец, получаем уравнение 9t+w=17. Это уравнение имеет очевидное решение: w=17 - 9t, где t - любое целое число. Двинулись в обратный путь: v=t - 2w=t - 34+18t=19t - 34, u=3v - w=66t - 119, y=v - 2u=- 113t+204, x=u - y=179t - 323. Таким образом, x=179t - 323, y=- 113t+204, где t - произвольное целое. Из условия x>0, y>- 100 найдем t=2, x=35, y - 22. Ответ. 35: - 22.
Тип урока: комбинированный урок
Основные понятия. Целочисленные решения уравнения
Самостоятельная деятельность учащихся. Решение задач по теме "Решение уравнений в целых числах".
Использование новых информационных технологий. В качестве дополнительного иллюстративного материала показ на интерактивной доске презентации к данному уроку.
План урока
Этапы урока
I. Этап актуализации знаний. Мотивация учебной проблемы
II. Основное содержание урока. Отработка с учащимися решений уравнений в целых числах
III. Формирование умений и навыков. Отработка изученного материала
IV. Первичная проверка усвоения знаний. Рефлексия
V. Домашнее задание
Основное содержание урока
Решение уравнений в целых числах
Рассмотрим несколько типичных уравнений, в которых требуется либо найти целочисленные решения, либо доказать отсутствие таковых.
Пример: Найти все целочисленные решения уравнения 3x2+4xy - 7y2=13
Решение. Разложим левую часть множители: 3x2+4xy - 7y2=(x - y)(3x+7y)
Имеем. Поскольку 13 можно представить в виде произведение двух целых чисел с учетом порядке четырьмя способами, то получаем четыре системы.
x - y=1 x - y=13 x - y=- 1 x - y=- 13
3x+7y=13 3x+7y=1 3x+7y=- 13 3x+7y=- 1
Целочисленные решения имеют лишь 1 - я и 3 - я системы. Ответ:(2; 1) (- 2;- 1).
Пример: Решить в целых числах уравнение 2х2 - 2ху+9х+у=2
Решение: Выразим у через х: у=(2x2+9x - 2)/(2x - 1)=(2x2 - x+10x - 5+3)/(2x - 1)=x+5+3/(2x - 1)
Поскольку у и х – целые числа, то 3/(2x - 1) должно быть целым числом. Имеем четыре возможности: 1) 2х - 1=1; 2) 2x - 1=3; 3) 2x - 1=- 1; 4) 2x - 1=- 3. Затем находим х и у. Ответ:(1; 9); (2; 8); (0; 2); (- 1; 3)
Пример: Найти целочисленные решения уравнения 113х+179у=17, удовлетворяющие неравенствам х>0, y>- 100.
Решение. Воспользуемся методом, сходным с алгоритмом Евклида. Имеем 179=113+66. Перепишем наше уравнение в виде: 113(x+y)+66y=17. Обозначим х+у=u, 113u+66y=17. Как видим, у нового уравнения один из коэффициентов уменьшился. Можно вновь 113 разделить на 66 с остатком, а лучше так: 113=2*66 - 19. Получаем 66(2u+y)- 19u=17. Обозначим 2u+y=v, 66v - 19u=17, 66=19*3+9. Получаем уравнение 19(3v - u)+9v - 17, 3v - u=w; 19w+9v=17, 9(2w+v)+w=17, 2w+v=t. Наконец, получаем уравнение 9t+w=17. Это уравнение имеет очевидное решение: w=17 - 9t, где t - любое целое число. Двинулись в обратный путь: v=t - 2w=t - 34+18t=19t - 34, u=3v - w=66t - 119, y=v - 2u=- 113t+204, x=u - y=179t - 323. Таким образом, x=179t - 323, y=- 113t+204, где t - произвольное целое. Из условия x>0, y>- 100 найдем t=2, x=35, y - 22. Ответ. 35: - 22.
Назар аударыңыз! Жасырын мәтінді көру үшін сізге сайтқа тіркелу қажет.
Жаңалықтар
Формулы корней квадратного уравнения
Култаева Гульнара Кудайбергеновна - учитель математики школы - гимназии №9 имени Наги Ильясова г. Кызылорда
Степень с рациональным показателем
КГУ «Серебрянский технологический колледж» УО ВКО, г. Серебрянск Преподаватель математики Сепбаева А.
Тригонометрические функции
КГУ «Серебрянский технологический колледж» УО ВКО, г. Серебрянск Преподаватель математики Сепбаева А. А.
Сложение и вычитание многозначных чисел
Сыздыкова С. Н. – учитель начальных классов средней школы №45 г. Астаны
Существование корней квадратного уравнения. Знаки корней
ГУ «Управление образования г. Астаны» ГККП «Колледж транспорта и коммуникаций» Преподаватель по дисциплине математика Джаппарова К. И
Пікірлер (0)
Ақпарат
Қонақтар,тобындағы қолданушылар пікірін білдіре алмайды.
Қонақтар,тобындағы қолданушылар пікірін білдіре алмайды.